Duality of locally quasi-convex convergence groups
نویسندگان
چکیده
<p>In the realm of convergence spaces, generalisation topological groups is groups, and corresponding extension Pontryagin duality continuous duality. We prove that local quasi-convexity a necessary condition for group to be c-reflexive. Further, we every character locally quasi-convex.</p>
منابع مشابه
Completeness properties of locally quasi-convex groups
It is natural to extend the Grothendieck theorem on completeness, valid for locally convex topological vector spaces, to Abelian topological groups. The adequate framework to do it seems to be the class of locally quasi-convex groups. However, in this paper we present examples of metrizable locally quasi-convex groups for which the analogue to the Grothendieck theorem does not hold. By means of...
متن کاملQuasi-barrelled Locally Convex Spaces
1. R. E. Lane, Absolute convergence of continued fractions, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 904-913. 2. R. E. Lane and H. S. Wall, Continued fractions with absolutely convergent even and odd parts, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 368-380. 3. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172. 4. H. S....
متن کاملQuasi-Discrete Locally Compact Quantum Groups
Let A be a C *-algebra. Let A ⊗ A be the minimal C *-tensor product of A with itself and let M (A ⊗ A) be the multiplier algebra of A ⊗ A. A comultiplication on A is a non-degenerate *-homomorphism ∆ : A → M (A ⊗ A) satisfying the coassociativity law (∆ ⊗ ι)∆ = (ι ⊗ ∆)∆ where ι is the identity map and where ∆ ⊗ ι and ι ⊗ ∆ are the unique extensions to M (A ⊗ A) of the obvious maps on A ⊗ A. We ...
متن کاملBornological Completion of Locally Convex Cones
In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.
متن کاملLocally Quasi-Convex Compatible Topologies on a Topological Group
For a locally quasi-convex topological abelian group (G, τ), we study the poset C (G, τ) of all locally quasi-convex topologies on G that are compatible with τ (i.e., have the same dual as (G, τ)) ordered by inclusion. Obviously, this poset has always a bottom element, namely the weak topology σ(G, Ĝ). Whether it has also a top element is an open question. We study both quantitative aspects of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied general topology
سال: 2021
ISSN: ['1576-9402', '1989-4147']
DOI: https://doi.org/10.4995/agt.2021.14585